1869

A Simple and Direct Synthesis of α -Hydroxy Unsaturated Aldehydes from α -Cyano- α -Hydroxymethyl Epoxides

Layachi Khamliche and Albert Robert*

Laboratoire de Chimie Structurale, U.A. C.N.R.S. 704, Université de Rennes I, Campus de Beaulieu, Rennes, France

The ring opening of α -cyano- α -hydroxymethyl epoxides by a solution of the complex Li₂NiBr₄ in tetrahydrofuran leads to α -bromo- α' -hydroxy ketones which in treatment with pyridine give good yields of α -hydroxy unsaturated aldehydes.

 α -Dicarbonyl compounds are important synthetic intermediates; there is also substantial interest in their antiviral properties.^{1—3} α -Hydroxy unsaturated aldehydes are tautomeric forms of α -dicarbonyl compounds. However, despite two recent interesting reports describing multistage syntheses of α -hydroxy unsaturated aldehydes from 2,2-dimethyl-1,3dioxole³ or from dioxolanones,⁴ the preparation of derivatives of this series remains difficult, and such compounds are poorly represented in the literature.

 α -Cyano- α -carboxyethyl epoxides are readily accessible starting materials⁵ which are reduced by sodium borohydride within 5 min into the corresponding α -cyano- α -hydroxymethyl epoxides (1).⁶ We describe here a one-pot synthesis of the α -hydroxy unsaturated aldehydes (4) starting from the epoxides (1).

As dilithium tetrabromonickel(II) in tetrahydrofuran (THF) is known to be a mild reagent for the ring opening of epoxides,^{7.8} we treated the epoxides (1) with this complex and obtained the α -bromo- α' -hydroxy ketone derivatives (3) contaminated by about 20% of the cyanohydrin (2). The mixture of (2) and (3) was characterized by ¹H n.m.r. spectroscopy and directly treated with pyridine to give moderate yields of the α -hydroxy unsaturated aldehydes (4) (Scheme 1; Table 1).

Scheme 1. Reagents and conditions: i, epoxide (1) (5.7 mmol), Li_2NiBr_4 (2.85 mmol), THF (27 ml), room temp., 6 h under N_2 ; ii, H_2O ; iii, pyridine (5.7 mmol), reflux, 2 h.

 Table 1. Preparation of the unsaturated aldehydes (4).†

R	Pha	p-ClC ₆ H ₄	p-MeC ₆ H ₄	$p-O_2NC_6H_4$	Etd
M.p., <i>t</i> /°C	119	162	176	173-175	
(3)/(2) ^b	85/15	90/10	80/20	65/35	
% Yield ^c	70	68	50	57	44

^a Lit.^{3,4,9,10} m.p. 119 °C. The ¹H n.m.r. and i.r. spectra of compound (4; R = Ph) are representative: $\delta_{\rm H}$ (CDCl₃) 9.22 (1H, d, $4_{\rm J_{OH}}$ 1.4 Hz, CHO), 7.87–7.27 (5H, m, Ph), 6.71 (1H, t, $4_{\rm OH} = 4_{\rm CH} = 1.4$ Hz, OH), and 6.14 (1H, d, $4_{\rm J_{OH}}$ 1.4 Hz, PhCH); the coupling constants could only be measured for a very pure sublimed sample and were assigned using spin decoupling; i.r. (CCl₄, cm⁻¹) 3446, 1672, 1648 cm⁻¹. ^b Ratio determinated by n.m.r. spectroscopy before elimination of HBr from (3). ^c Yield of the pure isolated aldehyde (4). ^d Compound (4; R = Et) was not stable and was characterized as its acetate (*Z*)-EtCH=C(OAc)CHO.

Their n.m.r. and i.r. spectra show that these compounds exist in the enol form. The reaction leads to only one isomer, probably the Z-isomer (4). This *cis*-relationship between CH and CHO is consistent with the ¹H n.m.r. spectra (no coupling

[†] The α -hydroxyaldehydes (4) gave satisfactory elemental analyses.

Received, 13th July 1987; Com. 992

n.m.r. spectra: $\delta_{C=O}$ 190.8, ¹J 185, ³J 6 Hz.‡

References

1 B. D. Tiffany, J. B. Wright, R. B. Moffett, R. V. Heinzelman, R. E. Strube, B. D. Aspergren, E. H. Lincoln, and J. L. White, J. Am. Chem. Soc., 1957, **79**, 1682.

observed between these two protons) and also with the ¹³C

- 2 R. B. Moffett, B. D. Tiffany, B. D. Aspergren, and R. V. Heinzelman, J. Am. Chem. Soc., 1957, 79, 1687.
- 3 D. L. Flynn, L. A. Mitscher, T. Veysoglu, and Z. Wielogoski, *Heterocycles*, 1982, 18, 83.
- 4 R. Ramage, G. J. Griffiths, F. E. Shutt, and J. N. A. Sweeney, J. Chem. Soc., Perkin Trans. 1, 1984, 1531.
- 5 A. Robert and A. Foucaud, Bull. Soc. Chim. Fr., 1969, 2531.
- 6 J. Mauger and A. Robert, J. Chem. Soc., Chem. Commun., 1986, 395.
- 7 R. D. Dawe, T. F. Molinski, and J. V. Turner, *Tetrahedron Lett.*, 1984, 2061.
- 8 L. Khamliche and A. Robert, Tetrahedron Lett., 1986, 5491.
- 9 F. Weygand and H. J. Bestmann, Chem. Ber., 1957, 90, 1230.
- 10 F. Weygand, H. Simon, and H. G. Floss, Chem. Ber., 1961, 94, 3135.

[‡] ³*J* for the *E*-isomer would be expected to be larger (*ca.* 12––14 Hz): V. Vogeli and W. Von Philipsborn, *Org. Magn. Reson.*, 1975, 7, 617.